Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Chin J Acad Radiol ; 4(4): 257-261, 2021.
Article in English | MEDLINE | ID: covidwho-1588631

ABSTRACT

Purpose: The Corona Virus Disease 2019 (COVID-19) was first reported in December 2019 from an outbreak of unexplained pneumonia in Wuhan (Hubei, China) that subsequently spread rapidly around the world. Because of the public health emergency, chest CT has been widely used for sensitive detection and diagnosis, monitoring the changes of lesions and also for treatment evaluation. The purpose of this study was to investigate radiation dose and image quality of chest CT scans received by COVID-19 patients and to evaluate the oncogenic risk of multiple chest CT examinations. Methods: A retrospective review of 33 patients with RT-PCR confirmed COVID-19 infection was performed from January 31, 2020 to February 19, 2020. The date of each CT exam and respective radiation dose for each exam was recorded for all patients. Multiple pulmonary CT scans were obtained during diagnosis and treatment procedure. Scan frequency, total scan times, radiation dose, and image quality were determined. Results: Thirty-three patients (15 males and 18 females, age 21-82 years) with confirmed COVID-19 pneumonia underwent a total of 143 chest CT scans. The number of CT scans per patient was 4 ± 1, with a range of 2-6. The time interval between two consecutive chest CT scans was 3 ± 1 days. The average effective dose from a single chest CT scan was 1.21 ± 0.10 mSv, with a range of 1.02-1.44 mSv. The average cumulative effective dose per patient was 5.25 ± 1.52 mSv, with a range of 2.24-7.48 mSv. The maximum cumulative effective dose was 7.48 mSv for six CT examinations during COVID-19 treatment. Based on subjective image quality analysis, the visual scoring of CT findings was 11.23 ± 1.35 points out of 15 points. Conclusions: The frequency, total number and image quality of chest CT scans should be reviewed carefully to guarantee minimally required CT scans during the COVID-19 management.

2.
Chinese journal of academic radiology ; : 1-5, 2021.
Article in English | EuropePMC | ID: covidwho-1459596

ABSTRACT

<h4>Purpose</h4> The Corona Virus Disease 2019 (COVID-19) was first reported in December 2019 from an outbreak of unexplained pneumonia in Wuhan (Hubei, China) that subsequently spread rapidly around the world. Because of the public health emergency, chest CT has been widely used for sensitive detection and diagnosis, monitoring the changes of lesions and also for treatment evaluation. The purpose of this study was to investigate radiation dose and image quality of chest CT scans received by COVID-19 patients and to evaluate the oncogenic risk of multiple chest CT examinations. <h4>Methods</h4> A retrospective review of 33 patients with RT-PCR confirmed COVID-19 infection was performed from January 31, 2020 to February 19, 2020. The date of each CT exam and respective radiation dose for each exam was recorded for all patients. Multiple pulmonary CT scans were obtained during diagnosis and treatment procedure. Scan frequency, total scan times, radiation dose, and image quality were determined. <h4>Results</h4> Thirty-three patients (15 males and 18 females, age 21–82 years) with confirmed COVID-19 pneumonia underwent a total of 143 chest CT scans. The number of CT scans per patient was 4 ± 1, with a range of 2–6. The time interval between two consecutive chest CT scans was 3 ± 1 days. The average effective dose from a single chest CT scan was 1.21 ± 0.10 mSv, with a range of 1.02–1.44 mSv. The average cumulative effective dose per patient was 5.25 ± 1.52 mSv, with a range of 2.24–7.48 mSv. The maximum cumulative effective dose was 7.48 mSv for six CT examinations during COVID-19 treatment. Based on subjective image quality analysis, the visual scoring of CT findings was 11.23 ± 1.35 points out of 15 points. <h4>Conclusions</h4> The frequency, total number and image quality of chest CT scans should be reviewed carefully to guarantee minimally required CT scans during the COVID-19 management.

3.
PLoS One ; 15(11): e0240347, 2020.
Article in English | MEDLINE | ID: covidwho-919032

ABSTRACT

BACKGROUND: As a pandemic, a most-common pattern resembled organizing pneumonia (OP) has been identified by CT findings in novel coronavirus disease (COVID-19). We aimed to delineate the evolution of CT findings and outcome in OP of COVID-19. MATERIALS AND METHODS: 106 COVID-19 patients with OP based on CT findings were retrospectively included and categorized into non-severe (mild/common) and severe (severe/critical) groups. CT features including lobar distribution, presence of ground glass opacities (GGO), consolidation, linear opacities and total severity CT score were evaluated at three time intervals from symptom-onset to CT scan (day 0-7, day 8-14, day > 14). Discharge or adverse outcome (admission to ICU or death), and pulmonary sequelae (complete absorption or lesion residuals) on CT after discharge were analyzed based on the CT features at different time interval. RESULTS: 79 (74.5%) patients were non-severe and 103 (97.2%) were discharged at median day 25 (range, day 8-50) after symptom-onset. Of 67 patients with revisit CT at 2-4 weeks after discharge, 20 (29.9%) had complete absorption of lesions at median day 38 (range, day 30-53) after symptom-onset. Significant differences between complete absorption and residuals groups were found in percentages of consolidation (1.5% vs. 13.8%, P = 0.010), number of involved lobe > 3 (40.0% vs. 72.5%, P = 0.030), CT score > 4 (20.0% vs. 65.0%, P = 0.010) at day 8-14. CONCLUSION: Most OP cases had good prognosis. Approximately one-third of cases had complete absorption of lesions during 1-2 months after symptom-onset while those with increased frequency of consolidation, number of involved lobe > 3, and CT score > 4 at week 2 after symptom-onset may indicate lesion residuals on CT.


Subject(s)
Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed , Adult , Betacoronavirus/isolation & purification , C-Reactive Protein/analysis , COVID-19 , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Length of Stay , Lung/diagnostic imaging , Male , Middle Aged , Neutrophils/cytology , Pandemics , Patient Discharge , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
4.
Front Public Health ; 8: 567672, 2020.
Article in English | MEDLINE | ID: covidwho-854056

ABSTRACT

Background: As global healthcare system is overwhelmed by novel coronavirus disease (COVID-19), early identification of risks of adverse outcomes becomes the key to optimize management and improve survival. This study aimed to provide a CT-based pattern categorization to predict outcome of COVID-19 pneumonia. Methods: One hundred and sixty-five patients with COVID-19 (91 men, 4-89 years) underwent chest CT were retrospectively enrolled. CT findings were categorized as Pattern 0 (negative), Pattern 1 (bronchopneumonia pattern), Pattern 2 (organizing pneumonia pattern), Pattern 3 (progressive organizing pneumonia pattern), and Pattern 4 (diffuse alveolar damage pattern). Clinical findings were compared across different categories. Time-dependent progression of CT patterns and correlations with clinical outcomes, i.e." discharge or adverse outcome (admission to ICU, requiring mechanical ventilation, or death), with pulmonary sequelae (complete absorption or residuals) on CT after discharge were analyzed. Results: Of 94 patients with outcome, 81 (86.2%) were discharged, 3 (3.2%) were admitted to ICU, 4 (4.3%) required mechanical ventilation, 6 (6.4%) died. 31 (38.3%) had complete absorption at median day 37 after symptom onset. Significant differences between pattern-categories were found in age, disease severity, comorbidity and laboratory results (all P < 0.05). Remarkable evolution was observed in Pattern 0-2 and Pattern 3-4 within 3 and 2 weeks after symptom-onset, respectively; most of patterns remained thereafter. After controlling for age, CT pattern significantly correlated with adverse outcomes [Pattern 4 vs. Pattern 0-3 [reference]; hazard-ratio [95% CI], 18.90 [1.91-186.60], P = 0.012]. CT pattern [Pattern 3-4 vs. Pattern 0-2 [reference]; 0.26 [0.08-0.88], P = 0.030] and C-reactive protein [>10 vs. ≤ 10 mg/L [reference]; 0.31 [0.13-0.72], P = 0.006] were risk factors associated with pulmonary residuals. Conclusion: CT pattern categorization allied with clinical characteristics within 2 weeks after symptom onset would facilitate early prognostic stratification in COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Pneumonia/diagnostic imaging , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
5.
J Xray Sci Technol ; 28(5): 863-873, 2020.
Article in English | MEDLINE | ID: covidwho-760850

ABSTRACT

OBJECTIVES: This study aims to trace the dynamic lung changes of coronavirus disease 2019 (COVID-19) using computed tomography (CT) images by a quantitative method. METHODS: In this retrospective study, 28 confirmed COVID-19 cases with 145 CT scans are collected. The lesions are detected automatically and the parameters including lesion volume (LeV/mL), lesion percentage to lung volume (LeV%), mean lesion density (MLeD/HU), low attenuation area lower than - 400HU (LAA-400%), and lesion weight (LM/mL*HU) are computed for quantification. The dynamic changes of lungs are traced from the day of initial symptoms to the day of discharge. The lesion distribution among the five lobes and the dynamic changes in each lobe are also analyzed. RESULTS: LeV%, MLeD, and LM reach peaks on days 9, 6 and 8, followed by a decrease trend in the next two weeks. LAA-400% (mostly the ground glass opacity) declines to the lowest on days 4-5, and then increases. The lesion is mostly seen in the bilateral lower lobes, followed by the left upper lobe, right upper lobe and right middle lobe (p < 0.05). The right middle lobe is the earliest one (on days 6-7), while the right lower lobe is the latest one (on days 9-10) that reaches to peak among the five lobes. CONCLUSIONS: Severity of COVID-19 increases from the day of initial symptoms, reaches to the peak around on day 8, and then decreases. Lesion is more commonly seen in the bilateral lower lobes.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Tomography, X-Ray Computed/methods , Adult , Betacoronavirus , COVID-19 , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Software
6.
Chin J Acad Radiol ; 3(2): 102-107, 2020.
Article in English | MEDLINE | ID: covidwho-232587

ABSTRACT

Purpose: To explore lung involvement in patients with coronavirus disease-19 (COVID-19) using quantitative computed tomography (QCT). Methods: A total of 52 patients with COVID-19 who were admitted to three hospitals in China from January 23, 2020 to February 1, 2020 were retrospectively analyzed using QCT. The accuracy of QCT segmentation was assessed. The relationship between the time from symptom onset to initial CT and QCT parameters acquired on the initial CT were explored. Results: First, the ability of QCT to detect and segment lesions was investigated and it was unveiled that results of segmentation of the majority of cases (42/52) were satisfactory and for 8 out of 52 patients, the images depicted lesions with miss-segmentation; besides, 2 out of 52 cases had negative finding on chest CT achieved by both radiologists and QCT. QCT-related parameters showed to have a relationship with the time from symptom onset to initial CT. In the early-stage (0-3 days), the percentage of lung involvement was 4%, with a mean density of - 462 ± 99 HU. The peak density of lesions appeared at the range of - 500 to - 700 HU on density histogram. In the intermediate-stage (4-6 days), the mean percentage of lung involvement noticeably increased compared with that in early stage (7%, p < 0.05). In late stage (7-14 days), the percentage of lung involvement decreased to 5%. The mean density of lesions was the highest (- 430 ± 80), and heterogeneity density distribution showed a dual-peak on density histogram. Conclusion: COVID-19 can be promptly detected by QCT. In addition, the QCT-related parameters can highly facilitate assessment of pulmonary involvement.

7.
Eur Radiol ; 30(9): 4865-4873, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-52597

ABSTRACT

OBJECTIVES: To delineate the evolution of CT findings in patients with mild COVID-19 pneumonia. METHODS: CT images and medical records of 88 patients with confirmed mild COVID-19 pneumonia, a baseline CT, and at least one follow-up CT were retrospectively reviewed. CT features including lobar distribution and presence of ground glass opacities (GGO), consolidation, and linear opacities were analyzed on per-patient basis during each of five time intervals spanning the 3 weeks after disease onset. Total severity scores were calculated. RESULTS: Of patients, 85.2% had travel history to Wuhan or known contact with infected individuals. The most common symptoms were fever (84.1%) and cough (56.8%). The baseline CT was obtained on average 5 days from symptom onset. Four patients (4.5%) had negative initial CT. Significant differences were found among the time intervals in the proportion of pulmonary lesions that are (1) pure GGO, (2) mixed attenuation, (3) mixed attenuation with linear opacities, (4) consolidation with linear opacities, and (5) pure consolidation. The majority of patients had involvement of ≥ 3 lobes. Bilateral involvement was more prevalent than unilateral involvement. The proportions of patients observed to have pure GGO or GGO and consolidation decreased over time while the proportion of patients with GGO and linear opacities increased. Total severity score showed an increasing trend in the first 2 weeks. CONCLUSIONS: While bilateral GGO are predominant features, CT findings changed during different time intervals in the 3 weeks after symptom onset in patients with COVID-19. KEY POINTS: • Four of 88 (4.5%) patients with COVID-19 had negative initial CT. • Majority of COVID-19 patients had abnormal CT findings in ≥ 3 lobes. • A proportion of patients with pure ground glass opacities decreased over the 3 weeks after symptom onset.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Travel-Related Illness , Young Adult
8.
J Pharm Anal ; 10(2): 123-129, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-4449

ABSTRACT

To examine the feasibility of using a computer tool for stratifying the severity of Coronavirus Disease 2019 (COVID-19) based on computed tomography (CT) images. We retrospectively examined 44 confirmed COVID-19 cases. All cases were evaluated separately by radiologists (visually) and through an in-house computer software. The degree of lesions was visually scored by the radiologist, as follows, for each of the 5 lung lobes: 0, no lesion present; 1, <1/3 involvement; 2, >1/3 and < 2/3 involvement; and 3, >2/3 involvement. Lesion density was assessed based on the proportion of ground-glass opacity (GGO), consolidation and fibrosis of the lesions. The parameters obtained using the computer tool included lung volume (mL), lesion volume (mL), lesion percentage (%), and mean lesion density (HU) of the whole lung, right lung, left lung, and each lobe. The scores obtained by the radiologists and quantitative results generated by the computer software were tested for correlation. A Chi-square test was used to test the consistency of radiologist- and computer-derived lesion percentage in the right/left lung, upper/lower lobe, and each of the 5 lobes. The results showed a strong to moderate correlation between lesion percentage scores obtained by radiologists and the computer software (r ranged from 0.7679 to 0.8373, P < 0.05), and a moderate correlation between the proportion of GGO and mean lesion density (r = -0.5894, P < 0.05), and proportion of consolidation and mean lesion density (r = 0.6282, P < 0.05). Computer-aided quantification showed a statistical significant higher lesion percentage for lower lobes than that assessed by the radiologists (χ2 = 8.160, P = 0.004). Our experiments demonstrated that the computer tool could reliably and accurately assess the severity and distribution of pneumonia on CT scans.

SELECTION OF CITATIONS
SEARCH DETAIL